if 9sinα+40cosα=41 then find all trigonometry ratio
Answers
Answered by
5
9 sin θ + 40 cos θ = 41
⇒ 9 sin θ = 41 – 40 cos θ _(i)
Squaring both sides, we get
⇒ 81sin²θ = 1681+1600 cos²θ – 2(41) (40cos θ)
[∵ (a – b)² = a² + b² –2ab]
⇒ 81 (1– cos²θ) =1681+1600 cos²θ – 3280cosθ
⇒ 81 – 81cos²θ = 1681 +1600cos² θ – 3280 cosθ
⇒ 1681cos²θ –3280cos θ +1600 = 0
⇒ (41)² cos² θ – 2(41) (40cos θ) + (40)² = 0
⇒ (41cos θ – 40 )² = 0
cosθ = 40 / 41
Extrà Information :-
Answered by
15
Answer:
9 sin θ + 40 cos θ = 41
⇒ 9 sin θ = 41 – 40 cos θ _(i)
Squaring both sides, we get
⇒ 81sin²θ = 1681+1600 cos²θ – 2(41) (40cos θ)
[∵ (a – b)² = a² + b² –2ab]
⇒ 81 (1– cos²θ) =1681+1600 cos²θ – 3280cosθ
⇒ 81 – 81cos²θ = 1681 +1600cos² θ – 3280 cosθ
⇒ 1681cos²θ –3280cos θ +1600 = 0
⇒ (41)² cos² θ – 2(41) (40cos θ) + (40)² = 0
⇒ (41cos θ – 40 )² = 0
cosθ = 40 / 41
Similar questions