If 9x^2+1/9x^2=23 find 3x+1/3x
Answers
Answer:
± 5
Step-by-step explanation:
Given---> 9x² + ( 1 / 9x² ) = 23
To find---> 3x + ( 1 / 3x )
Solution---> We have an identity , as follows,
( a + b )² = a² + b² + 2ab
Now , applying it ,
( 3x + 1 / 3x )² = ( 3x )² + ( 1 / 3x )² + 2 ( 3x ) ( 1 / 3x )
= 9x² + 1 / 9x² + 2
= { 9x² + ( 1 / 9x² ) } + 2
Putting 9x² + 1 / 9x² = 23 , we get,
= ( 23 ) + 2
( 3x + 1 / 3x )² = 25
3x + 1 / 3x = ± 5
Additional information --->
1) ( a - b )² = a² + b² - 2ab
2) ( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca
3) ( a + b )³ = a³ + b³ + 3ab ( a + b )
4) ( a - b )³ = a³ - b³ - 3ab ( a - b )
5) a² - b² = ( a + b ) ( a - b )
6) a³ + b³ = ( a + b ) ( a² + b² - ab )
7) a³ - b³ = ( a - b ) ( a² + b² + ab )
Answer:
( a + b )² = a² + b² + 2ab
( 3x + 1 / 3x )² = ( 3x )² + ( 1 / 3x )² + 2 ( 3x ) ( 1 / 3x )
= 9x² + 1 / 9x² + 2
= { 9x² + ( 1 / 9x² ) } + 2
Putting 9x² + 1 / 9x² = 23 , we get,
= ( 23 ) + 2
( 3x + 1 / 3x )² = 25
3x + 1 / 3x = ± 5