if A =[ 0 4 -2 -4 0 8 2 -8 X] is a skew symmetric matrix then find the value of x
Answers
SOLUTION
GIVEN
is a skew symmetric matrix
TO DETERMINE
The value of x
CONCEPT TO BE IMPLEMENTED
A Matrix A is said to be skew symmetric matrix if
EVALUATION
Here it is given that
Since A is a skew symmetric matrix
Comparing both sides we get
Hence the required value of x is 0
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. if A= diag (4,2,1) then det A is equal to
https://brainly.in/question/31715604
2. let A be a 5 × 7 matrix then each column of A contains
https://brainly.in/question/25156096
Answer:
SOLUTION
GIVEN
\begin{gathered}A = \displaystyle\begin{pmatrix} 0 & 4 & - 2\\ - 4 & 0 & 8 \\ 2 & - 8 & x \end{pmatrix} \end{gathered}A=⎝⎛0−4240−8−28x⎠⎞
is a skew symmetric matrix
TO DETERMINE
The value of x
CONCEPT TO BE IMPLEMENTED
A Matrix A is said to be skew symmetric matrix if
{A}^{t} = - AAt=−A
EVALUATION
Here it is given that
\begin{gathered}A = \displaystyle\begin{pmatrix} 0 & 4 & - 2\\ - 4 & 0 & 8 \\ 2 & - 8 & x \end{pmatrix} \end{gathered}A=⎝⎛0−4240−8−28x⎠⎞
\begin{gathered} \implies \: {A}^{t} = \displaystyle\begin{pmatrix} 0 & - 4 & 2\\ 4 & 0 & - 8 \\ - 2 & 8 & x \end{pmatrix} \end{gathered}⟹At=⎝⎛04−2−4082−8x⎠⎞
Since A is a skew symmetric matrix
{A}^{t} = - AAt=−A
\begin{gathered} \implies \: \displaystyle\begin{pmatrix} 0 & - 4 & 2\\ 4 & 0 & - 8 \\ - 2 & 8 & x \end{pmatrix} = - \displaystyle\begin{pmatrix} 0 & 4 & - 2\\ - 4 & 0 & 8 \\ 2 & - 8 & x \end{pmatrix} \end{gathered}⟹⎝⎛04−2−4082−8x⎠⎞=−⎝⎛0−4240−8−28x⎠⎞
\begin{gathered} \implies \: \displaystyle\begin{pmatrix} 0 & - 4 & 2\\ 4 & 0 & - 8 \\ - 2 & 8 & x \end{pmatrix} = \displaystyle\begin{pmatrix} 0 & - 4 & 2\\ 4 & 0 & - 8 \\ - 2 & 8 & - x \end{pmatrix} \end{gathered}⟹⎝⎛04−2−4082−8x⎠⎞=⎝⎛04−2−4082−8−x⎠⎞
Comparing both sides we get
x = - xx=−x
\implies 2x = 0⟹2x=0
\implies x = 0⟹x=0
Hence the required value of x is 0