Math, asked by kshitijjumma, 9 months ago

if a=(1,0,0),(2,1,0),(3,3,1) then reduce it to I3 by using column transformation

Answers

Answered by codiepienagoya
7

Given:

a= \left[\begin{array}{ccc}1&0&0\\2&1&0\\3&3&1\end{array}\right]

To find:

I_3=?\\

Solution:

a= \left[\begin{array}{ccc}1&0&0\\2&1&0\\3&3&1\end{array}\right]

calculate |a|:

\bold{|a|= [1(1-0) -0(2-0)+0(6-3)]}

    =[1(1)-0(2)+0(3)]\\\\=[1-0+0]\\\\= 1

where a is not a singular matrix.

Calculating a^{-1} :

\to C_1= C_1- 2C_2

a= \left[\begin{array}{ccc}1&0&0\\0&1&0\\-3&3&1\end{array}\right]

\to C_1= C_1+3C_3\\\\a= \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&3&1\end{array}\right]\\\\\to C_2= C_2+3C_3\\\\a= \left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]

I_3= a

Similar questions