Math, asked by phalak2526, 11 months ago

If A(1,2),B(4,3) and C(6,6) are the three vertices of a parallelogram ABCD, find the vertex D and also the area.

Answers

Answered by BrainlyConqueror0901
8

Answer:

{\pink{\green{\sf{Coordinate\:of\:D=(3,5)}}}}

{\pink{\green{\sf{Area\:of\:parallelogram=0\:units}}}}

Step-by-step explanation:

\huge{\pink{\green{\underline{\red{\sf{SOLUTION-}}}}}}

》In the given question information given about a parallelogram and its Coordinate of three vertices.

》We have to find the Coordinate of forth vertices and Area of parallelogram.

 \underline \bold{ Given  \: coordinates : } \\  \implies A= (1,2) \\  \implies B = (4,3) \\  \implies C = (6,6) \\  \\  \underline \bold{To \: Find : } \\  \implies Coordinate \: of \:  D = ( x_{4},y_{4}) \\  \implies Area \: of \: parallelogram = ?

》According to given question :

 \bold{ For \: mid \: point \: of \: AC \implies } \\ \implies  x =  \frac{x_{1} +x_{2} }{2}  \\  \implies x =  \frac{1 + 6}{2}  \\  \implies x =  \frac{7}{2}  \\  \\  \implies y =  \frac{y_{1} +y_{2}}{2}   \\  \implies y =  \frac{2 + 6}{2}  \\  \implies y = 4 \\  \\  \bold{For \: mid \: point \: of \: BD \implies} \\  \implies \:x=\frac{x_{3} +x_{4}}{2}\\  \implies  \frac{7}{2}  =  \frac{4 +x_{4}}{2}  \\  \implies x_{4} = 7 - 4 \\   \bold{\implies x_{4} = 3} \\  \\ \implies y =  \frac{y_{3} +y_{4}}{2}  \\  \implies 4 =  \frac{3 +y_{4}}{2}  \\  \implies y_{4} = 8 - 3 \\   \bold{\implies y_{4} = 5}

》We know the formula for area of triangle so parallelogram makes two triangles.

 \implies Area \: of \: parallelogram = Area \: of \triangle ABC +  Area \: of \triangle ADC \\  \implies Area =  \frac{1}{2} (x1 (y2 - y3) + x2(y3 - y1) + x3(y1 - y2)) +  \frac{1}{2} (x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2) )\\  \implies Area =  \frac{1}{2} (1(3 - 6) + 4(6 -2) + 6(2 - 3)) +  \frac{1}{2} (1(5 - 6) + 3(6 - 2) + 6(2 - 5) )\\  \implies Area =  \frac{1}{2} (- 3 + 16  - 6- 1 + 12  - 18) \\  \implies Area =  \frac{1}{2} \times 0\\  \bold {\implies area = 0 \:units}

Answered by MarshmellowGirl
12

✿━━━━@♥ℳg━━━━✿

\boxed{Explained\:Answer}

______________________________

✿━━━━@♥ℳg━━━━✿

\mathfrak{\huge{\red{ANSWER}}}

Let A(1, 2), B (4, 3) and C(6, 6).

Let D (x, y) be the fourth vertex of the parallelogram ABCD.

Since, the diagonals of parallelogram bisect each other at O.

∴ Mid point of BD = Mid point of AC

Thus, (3, 3) is the fourth vertex

Similar questions