If a = 1 -√2, find the value of (a-1/a)^2
Answers
Answered by
10
Answer:
4
Step-by-step explanation:
Given,
a = 1 - √2
⇒ a = 1 - √2
⇒ 1 / a = 1 / ( 1 - √2 )
Multiplying and dividing RHS by 1 + √2 :
⇒ 1 / a = ( 1 + √2 ) / { ( 1 + √2 ) ( 1 - √2 ) }
⇒ 1 / a = ( 1 + √2 ) / { ( 1 )^2 - ( √2 )^2 } { Using ( a + b )( a - b ) = a^2 - b^2 }
⇒ 1 / a = ( 1 + √2 ) / ( 1 - 2 )
⇒ 1 / a = ( 1 + √2 ) / ( - 1 )
⇒ 1 / a = - 1 - √2
Therefore,
⇒ a - 1 / a = 1 - √2 - ( - 1 - √2 )
⇒ a - 1 / a = 1 - √2 + 1 + √2
⇒ a - 1 / a = 2
⇒ ( a - 1 / a )^2 = 4
Answered by
2
Answer: √2+2
Step-by-step explanation:
1-√2-1×1+√2\1-√2×1+√2
= -1√2-√4\1-√4
=-√2-2\-1
=√2+2 Ans
Similar questions