Math, asked by Marinetteqgredte15, 1 month ago

if a =1/3-√11 and b=1/a, then find a^2-b^2​

Answers

Answered by jitendra12iitg
3

Answer:

The answer is \dfrac{15\sqrt{11}-30}{2}

Step-by-step explanation:

Given

        a=\dfrac{1}{3-\sqrt{11}}

Rationalize the denominator

      \Rightarrow a=\dfrac{1}{3-\sqrt{11}}\times \dfrac{3+\sqrt 11}{3+\sqrt{11}}

              =\dfrac{3+\sqrt{11}}{9-11}=\dfrac{3+\sqrt{11}}{-2}

    \Rightarrow a^2=\dfrac{9+11+6\sqrt{11}}{4}=\dfrac{20+6\sqrt{11}}{4}=\dfrac{10+3\sqrt{11}}{2}...(1)

Also given

                b=\dfrac{1}{a}=3-\sqrt {11}

       \Rightarrow b^2=(3-\sqrt{11})^2=9+11-6\sqrt{11}=20-6\sqrt{11}

Therefore

       a^2-b^2=\dfrac{10+3\sqrt{11}}{2}-(20-6\sqrt{11})

                   =\dfrac{10+3\sqrt{11}-40+12\sqrt{11}}{2}=\dfrac{15\sqrt{11}-30}{2}

PS: I suspect some error in this questions

Similar questions