Math, asked by sanjeevlic, 11 months ago

If (a,-1),(3,4),(-2,4),(-3,b)are vertex of a parallelogram, then find the value of a,b​

Answers

Answered by smitamahapatra2090
1

Answer:

a = 2 , b = -1

Step-by-step explanation:

The vertices of ║gm are (a,-1) , (3,4) , (-2,4) , (-3,b).

                                           A        B         C        D

The diagonals of ║gm bisect each other.

⇒ Diagonals AC & BD have common midpoints.

(\frac{a-2}{2} , \frac{4-1}{2}) = (\frac{3-3}{2} , \frac{4+b}{2})

(\frac{a-2}{2} , \frac{3}{2}) = (\frac{0}{2} , \frac{4+b}{2})

⇒ a - 2 = 0 , 4 + b = 3

⇒ a = 2 , b = -1

Similar questions