Math, asked by joyft83, 10 months ago

if a+¹/a=1 then a³+1=?​

Answers

Answered by Cosmique
9

\underline{ \underline{ \large{ \red{ \bf{Given}}}}}

\mathrm{ a +  \frac{1}{a} = 1 }

\underline{ \underline{ \large{ \red{ \bf{To \: find}}}}}

 \mathrm{{a}^{3}  + 1  = ?}

\underline{ \underline{ \large{ \red{ \bf{Solution}}}}}

we have

 \mathrm{a +  \frac{1}{a} = 1 }

taking LCM

 \mathrm{ \frac{ {a}^{2}  + 1 }{a}  = 1}

cross multiplying

 \mathrm{ {a}^{2}  + 1  = a}

\mathrm{ {a}^{2}  + 1 - a = 0 \: ....eqn(1)}

Now,

we have to find

\mathrm{ {a}^{3}  + 1}

\mathrm{( {a})^{3} + ( {1})^{3}  }

using identity

 \small{\bf{ {x}^{3}  +  {y}^{3}  = (x + y)( {x}^{2} +  {y}^{2} - xy)  }}

we will get

 \mathrm{(a + 1)( {a}^{2} + 1 - a) }

using eqn (1) we will get

 \mathrm{(a + 1)(0) = 0}

Hence,

 \boxed{ \pink {\bf{ {a}^{3}  + 1 = 0}}}

Answered by amitnrw
1

Given  : a  + 1/a)   = 1

To Find  : a³ + 1

Solution:

a  + 1/a   = 1

=> a²  + 1  = a

=> a² - a  +  1 = 0

a³ + b³  = (a + b)(a² -ab + b²)

a = a  and b = 1

a³ + 1  = (a + 1)(a² - a + 1)

substituting a² - a  +  1 = 0

=> a³ + 1  = (a + 1)0

=> a³ + 1  =  0

Hence if   a  + 1/a   =  1  then  a³ + 1 = 0

Learn More:

If a + b + c = 1, a2+b2+c2=9, a3+b3+c3=1 find 1/a + 1/b + 1/c ...

https://brainly.in/question/11392304

Similar questions