if a + 1\a = 11 find the value of a square + 1 by a square
Answers
Answered by
4
Answered by
0
Answer:
\begin{gathered}a + \frac{1}{a} = 11 \\ squaring \: both \: sides \\ {a}^{2} + { \frac{1}{a} }^{2} = {11}^{2} \\ = {a}^{2} + \frac{1}{ {a}^{2} } + 2 \times a \times \frac{1}{a} = 121 \\ = {a}^{2} + \frac{1}{ {a}^{2} } + 2 = 121 \\ = {a}^{2} + \frac{1}{ {a}^{2} } = 121 - 2 = 119 \end{gathered}
a+
a
1
=11
squaringbothsides
a
2
+
a
1
2
=11
2
=a
2
+
a
2
1
+2×a×
a
1
=121
=a
2
+
a
2
1
+2=121
=a
2
+
a
2
1
=121−2=119
Similar questions