if (a+1/a+2)^2 = 4. then find a^2+(1/a)^2, given that (a^2 + (1/a)^2) cannot be negative
Answers
Answered by
15
(a+1/a+2)²= 4
a²+ 1 + 2a/a²+ 4 + 4a. =. 4
a²+ 1 + 2a. =. 4(a² + 4. +4a )
a² + 1 + 2à. =. 4a². + 16. + 16a
0. =. 4a² - a². + 16 - 1. + 16a - 2a
0= 3a². + 15. + 14a
0 =. 3a² + 14a. + 15
0= 3a² + 9a + 5a + 15
0. =. 3a(a+3) +5(a+3)
0. = (a+3)(3a+5)
a = -3
a= -5/3
then the value of ,
when a=-3
a²+(1/a)² = (-3)² +. (-1/3)²
= 9 + 1/9
= (81+1)/9
=. 82/9
and when a= -5/3,
a²+1/a² =. (-5/3)²+(1/-5/3)²
=. 25/9 + 9/25
=. (625+81)/225
= 706/225
I hope it is helpful for you
please mark it as brainliest answer if you have satisfied
gauravmahore:
mark it
Answered by
5
Step-by-step explanation:
answer is 14 I hope it helps you yoyo
Similar questions