if (a+1/a)²=3 and a is not equal to 0 then show that a³+1/a³=0
Answers
Answered by
7
First we should find the value of
So,
Answered by
1
Answer:
a³ + 1/a³ = 0
Step-by-step explanation:
⇒ (a + 1/a)² = 3
⇒ (a + 1/a) = √3
Cube on both sides:
⇒ (a + 1/a)³ = (√3)³
⇒ a³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 3√3
⇒ a³ + 1/a³ + 3(1))(a + 1/a) = 3√3
⇒ a³ + 1/a³ + 3(√3) = 3√3 [from above]
⇒ a³ + 1/a³ = 3√3 - 3√3
⇒ a³ + 1/a³ = 0 proved
Similar questions