Math, asked by AshiDwivedi, 9 months ago

if (a+1/a)²=3 and a is not equal to 0 then show that a³+1/a³=0​

Answers

Answered by tahseen619
7

{\underline{{\text{Given:}}}}

 {(a +  \dfrac{1}{a}) }^{2}  = 3

{\underline{{\text{To Prove:}}}}

 {a}^{3}  +  \dfrac{1}{ {a}^{3} }  = 0

{\underline{{\text{Solution:}}}}

First we should find the value of  a + \dfrac{1}{a}

So,

 {(a +  \frac{1}{a}) }^{2}  = 3 \\  \\ a +  \frac{1}{a}  =  \pm \sqrt{3} ......(1) \:\:\: \:\:[\text{Using+value]} \\  \\ [\text{Cubing both side}] \\  \\  {(a +  \frac{1}{a}) }^{3}  = {( \sqrt{3} )}^{3}  \\  \\ {a}^{3} +  \frac{1}{ {a}^{3} }  + 3.a. \frac{1}{a} (a +  \frac{1}{a}) = 3 \sqrt{3}  \\  \\ {a}^{3} +  \frac{1}{ {a}^{3} }  + 3.\cancel{a}. \frac{1}{ \cancel{a}} ( \sqrt{3} ) = 3 \sqrt{3} \:  \:  \:  [\text{From ...1}] \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  + 3 \sqrt{3}  = 3 \sqrt{3}  \\  \\  {a}^{3}  +  \frac{1}{ {a}^{3} }  = 3 \sqrt{3}  - 3 \sqrt{3}  \\  \\ {a}^{3}  +  \frac{1}{ {a}^{3} } = 0 \\  \\  \therefore \:  \: {a}^{3}  +  \frac{1}{ {a}^{3} } = 0  \:  \:  \:  \: \text{[Proved]}

{\underline{{\text{Important Algebra Formula}}}}

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy\\ \\ {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Answered by abhi569
1

Answer:

a³ + 1/a³ = 0

Step-by-step explanation:

⇒ (a + 1/a)² = 3

(a + 1/a) = √3

       Cube on both sides:

⇒ (a + 1/a)³ = (√3)³

⇒ a³ + (1/a)³ + 3(a)(1/a)(a + 1/a) = 3√3

⇒ a³ + 1/a³ + 3(1))(a + 1/a) = 3√3

⇒ a³ + 1/a³ + 3(√3) = 3√3    [from above]

⇒ a³ + 1/a³ = 3√3 - 3√3

⇒ a³ + 1/a³ = 0         proved

Similar questions