Math, asked by noname20, 2 months ago

if (a+1/a)^2 =3 than show a^3 + 1/a^3=0​

Answers

Answered by ZAYNN
10

Answer:

  • Given that \sf\bigg(a+\dfrac{1}{a}\bigg)^2=3

  • Show that \sf a^3+\dfrac{1}{a^3}=0

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf \sf\bigg(a+\dfrac{1}{a}\bigg)^2=3\\\\\\:\implies\sf a+\dfrac{1}{a} = \sqrt{3}\\\\{\scriptsize\qquad\bf{\dag}\:\:\texttt{Cubing both sides - }}\\\\:\implies\sf \bigg(a+\dfrac{1}{a}\bigg)^3 =( \sqrt{3})^3\\\\\\:\implies\sf {a}^{3} + \dfrac{1}{{a}^{3}} +3 \times a \times \dfrac{1}{a}\bigg(a+\dfrac{1}{a}\bigg) =3 \sqrt{3}\\\\\\:\implies\sf {a}^{3} + \dfrac{1}{{a}^{3}} +3\bigg(a+\dfrac{1}{a}\bigg) =3 \sqrt{3}\\\\{\scriptsize\qquad\bf{\dag}\:\:\tt{Putting \:value \:of \:\bigg(a+\dfrac{1}{a}\bigg)}} \\\\:\implies\sf{a}^{3} + \dfrac{1}{{a}^{3}} +3 \times \sqrt{3}  =3 \sqrt{3}\\\\\\:\implies\sf {a}^{3} + \dfrac{1}{{a}^{3}} +3 \sqrt{3} =3 \sqrt{3}\\\\\\:\implies\sf {a}^{3} + \dfrac{1}{{a}^{3}} =3 \sqrt{3} -3 \sqrt{3}\\\\\\:\implies \underline{\boxed{\sf {a}^{3} + \dfrac{1}{{a}^{3}} = 0}}

\rule{200}{1}

Shortcut for this :

1. Whenever the value of \sf\bigg(a+\dfrac{1}{a}\bigg)^2=3 then value of \sf\bigg(a^3+\dfrac{1}{a^3}\bigg)=0

2. Whenever the value of \sf\bigg(a+\dfrac{1}{a}\bigg)^2=3 then value of \sf(a^6+1)=0

Answered by diajain01
44

{\boxed{\underline{\tt{ \orange{Required  \:  \: Answer:-}}}}}

◉ GIVEN :-

 :  \longrightarrow{ \tt{ \bold{ {(a +  \frac{1}{a}) }^{2}  = 3}}}

◉ TO SHOW:-

 :  \longrightarrow{ \tt{ \bold{ \: a^3 +  \frac{1}{a^3} =0}}}

◉ FORMULA USED:-

 \longmapsto \: using  \: (a + b)^3 \:  = a^3 + b^3 + \: 3ab(a + b)</p><p>

 \longmapsto \: a^3 + b^3 = (a + b)^3 - 3ab(a + b)

Here we are using

a = a

b = 1/a

◉ SOLUTION:-

{\boxed{\underline{\red{L.H.S}}}}

Now substituting the values.

 \leadsto \: a^3+(1/a)^3 \: = (a+ \frac{1}{a} )^3-3  \times a \times  \frac{1}{a} (a+ \frac{1}{a} )

 \leadsto \: \sqrt{3} ^3-3 \times  \sqrt{3}

 \leadsto \: 3 \sqrt{3} -3 \sqrt{3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   : \longrightarrow{ \boxed{ \underline{ \mathtt{ \purple{0}}}}}

{\boxed{\underline{\red{R.H.S}}}}

HENCE PROVED :)

Similar questions