If a+1/a=2, find the value of
Answers
Solution :-
→ (a + 1/a) = 2
Squaring both sides, we get,
→ (a + 1/a)² = 2²
using (x + y)² = x² + y² + 2xy ,
→ a² + 1/a² + 2 * a * 1/a = 4
→ a² + 1/a² + 2 = 4
→ a² + 1/a² = 4 - 2
→ a² + 1/a² = 2
Now,
→ (a² + 1/a²) = 2
Squaring both sides, we get,
→ (a² + 1/a²)² = 2²
using (x + y)² = x² + y² + 2xy ,
→ a⁴ + 1/a⁴ + 2 * a² * 1/a² = 4
→ a⁴ + 1/a⁴ + 2 = 4
→ a⁴ + 1/a⁴ = 4 - 2
→ (a⁴ + 1/a⁴) = 2 (Ans.)
Question:-
If a + 1/a = 2, find a⁴ + 1/a⁴
Formula Used:-
(x + y)² = x² + y² + 2xy
Answer:-
1st method:-
2 = (a + 1/a)
Squaring both sides,
=> 2² = (a + 1/a)²
=> 4 = a² + 1/a² + (2 * a * 1/a)
=> a² + 1/a² = 4 - 2
=> a² + 1/a² = 2
2 = (a² + 1/a²)
Squaring both sides,
=> 2² = (a² + 1/a²)²
=> 4 = (a²)² + (1/a²)² + (2 * a² * 1/a²)
=> a⁴ + 1/a⁴ = 4 - 2
=> a⁴ + 1/a⁴ = 2
Ans. a⁴ + 1/a⁴ = 2
2nd Method:-
a + 1/a = 2
=> (a² + 1)/a = 2
=> a² - 2a + 1 = 0
=> a² - a - a + 1 = 0
=> a(a - 1) - 1(a - 1) = 0
=> (a - 1)(a - 1) = 0
So, a = 1
So, a⁴ + 1/a⁴
= (1)⁴ + 1/(1)⁴
= 2
Ans. a⁴ + 1/a⁴ = 2
From 2nd method, even if the question is asked, find the value of a^(9000) + 1/(a)^(9000), the answer will still be (1 + 1) = 2, as we know the value of a = 1
Similarly, if the question is asked a^(8000) - 1/(a)^(8000), the answer will be (1 - 1) = 0,
as we know the value of a = 1