if a+1/a=2, prove that a^2+1/a^2=a^4+1/a^4=a^3+1/a^3
Answers
Answered by
0
Answer:
Step-by-step explanation:
a + 1/a = 2
(a+1/a)^2 = (2)^2
a^2 + 2 + 1/a^2 = 4
a^2 + 1/a^2 = 2
a^2 + 1/a^2 = a + 1/a = 2
(a^2 + 1/a^2) (a + 1/a) = 2x2
a^3 + a + 1/a + 1/a^3 =4
a^3 + 2 + 1/a^3 =4
a^3 + 1/a^3 = 2
(a^2 + 1/a^2)(a^2 + 1/a^2) = 2x2
a^4 + 2 + 1/a^4 = 4
a^4 + 1/a^4 = 2
a + 1/a
= 2
= a^2 + 1/a^2
= a^3 + 1/a^3
= a^4 + 1/a^4 (proved)
Similar questions