Math, asked by AnupBhaskar, 4 months ago

If a+1/a = -2, then find the value of a²+1/a²​

Answers

Answered by Anonymous
1

Answer:

a²+1/a² = 2

Step-by-step explanation:

a+1/a = -2

=> (a+1/a)² = (-2)²

=> a²+1/a²+2*a*1/a = 4

=> a²+1/a²+2 = 4

=> a²+1/a² = 4-2

=> a²+1/a² = 2

using formula (x-y)² = ++2*x*y

Answered by varadad25
5

Answer:

\displaystyle{{\boxed{\red{\sf\:a^2\:+\:\dfrac{1}{a^2}\:=\:2}}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:\left(\:a\:+\:\dfrac{1}{a}\:\right)\:=\:-\:2}

We have to find the value of,

\displaystyle{\sf\:\left(\:a^2\:+\:\dfrac{1}{a^2}\:\right)}

Now,

\displaystyle{\sf\:\left(\:a\:+\:\dfrac{1}{a}\:\right)\:=\:-\:2}

\displaystyle{\implies\sf\:\left(\:a\:+\:\dfrac{1}{a}\:\right)^2\:=\:(\:-\:2\:)^2\:\quad\:-\:-\:-\:[\:Squaring\:both\:sides\:]}

\displaystyle{\implies\sf\:a^2\:+\:2\:\times\:\cancel{a}\:\times\:\dfrac{1}{\cancel{a}}\:+\:\dfrac{1}{a^2}\:=\:4\:\quad\:-\:-\:-\:[\:\because\:(\:a\:+\:b\:)^2\:=\:a^2\:+\:2ab\:+\:b^2\:]}

\displaystyle{\implies\sf\:a^2\:+\:2\:+\:\dfrac{1}{a^2}\:=\:4}

\displaystyle{\implies\sf\:a^2\:+\:\dfrac{1}{a^2}\:=\:4\:-\:2}

\displaystyle{\implies\underline{\boxed{\red{\sf\:a^2\:+\:\dfrac{1}{a^2}\:=\:2}}}}

Similar questions