Math, asked by anshmannat1358, 11 months ago

if a-1/a=3 then find a2+1/a2​

Answers

Answered by Brâiñlynêha
9

\huge\mathbb{SOLUTION:-}

\sf\bullet a-\dfrac{1}{a}=3

  • We have to find the value of

\sf\bullet a{}^{2}+\dfrac{1}{a{}^{2}}=?

Now formula used

\boxed{\sf{(a-b){}^{2}=a{}^{2}+b{}^{2}-2ab}}

So

\sf \bigg(a-\dfrac{1}{a}\bigg){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\times \cancel{a}\times \dfrac{1}{\cancel {a}}\\ \\ \sf\implies a{}^{2}+\dfrac{1}{a{}^{2}}-2

\sf\underline{\red{A.T.Q:-}}

\sf\implies \bigg(a-\dfrac{1}{a}\bigg){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\\ \\ \sf\implies (3){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\\ \\ \sf\implies 9-2=a{}^{2}+\dfrac{1}{a{}^{2}}\\ \\ \sf\implies a{}^{2}+\dfrac{1}{a{}^{2}}=6

\boxed{\purple{\sf{a{}^{2}+\dfrac{1}{a{}^{2}}=6}}}

Answered by Anonymous
4

\huge\bold\green{Question}

If a-1/a=3 then find a²+1/a²

\huge\bold\green{Answer}

According to the question we have to find the

value of a²+1/a²

Simply, by using the identity

\tt\green{(a-b){}^{2}=a{}^{2}+b{}^{2}-2ab}

\begin{lgathered}\tt \bigg(a-\dfrac{1}{a}\bigg){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\times \cancel{a}\times \dfrac{1}{\cancel {a}}\\ \\ \tt = a{}^{2}+\dfrac{1}{a{}^{2}}-2\end{lgathered}

So, according to the question,

\begin{lgathered}\tt \bigg(a-\dfrac{1}{a}\bigg){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\\ \\ \tt = (3){}^{2}=a{}^{2}+\dfrac{1}{a{}^{2}}-2\\ \\ \tt = 9-2=a{}^{2}+\dfrac{1}{a{}^{2}}\\ \\ \tt = a{}^{2}+\dfrac{1}{a{}^{2}}=6\end{lgathered}

Hence, the required answer is \tt{a{}^{2}+\dfrac{1}{a{}^{2}}=6}

Similar questions