Math, asked by mohdaadil17188162, 7 months ago

if(a+1/a)=3thena³+1/a³ equals to​

Answers

Answered by Ailsa
1

Given :  \sf{ a + {\dfrac{1}{a}} = 3 }

To find :  \sf{a^3 + {\dfrac{1}{a^3}} }

Solution :  Cubing both sides of \sf{ a + {\dfrac{1}{a}} = 3. }

\longrightarrow\sf{ \left( a + {\dfrac{1}{a}} \right) ^3 = (3)^3 }

{\boxed{\sf{\bullet \ Identity \ : \ (x + y)^3 = x^3 + y^3 + 3xy(x + y) }}}

\sf{\qquad \quad Here, \ x = a, \ b = {\dfrac{1}{a}} }

\longrightarrow\sf{(a)^3 + \left( {\dfrac{1}{a}} \right) ^3 + 3.a. {\dfrac{1}{a}} \left( a + {\dfrac{1}{a}} \right) = 27}

\longrightarrow\sf{a^3 + {\dfrac{1}{a^3}} + 3 \left( a + {\dfrac{1}{a}} \right) = 27}

  • Putting known values.

\longrightarrow\sf{a^3 + {\dfrac{1}{a^3}} + 3(3) = 27}

\longrightarrow\sf{a^3 + {\dfrac{1}{a^3}} + 9 = 27}

\longrightarrow\sf{a^3 + {\dfrac{1}{a^3}} = 27 - 9}

\longrightarrow\sf{a^3 + {\dfrac{1}{a^3}} = {\boxed{18}}}

Similar questions