Math, asked by adishvayu12, 10 months ago

If a -1/a =4, find the value of a2 + 1/a2
Pls answer fast I will mark brainliest

Answers

Answered by abhi569
4

Answer:

18

Step-by-step explanation:

  We know ( a + b )^2 = a^2 + b^2 + 2ab

Square on both sides of a - 1/a = 4

⇒ ( a - 1 / a )^2 = 4^2

⇒ a^2 + ( 1 / a )^2 - 2( a * 1 / a ) = 16

⇒ a^2 + 1 / a^2 - 2( 1 ) = 16

⇒ a^2 + 1 / a^2 = 16 + 2

a^2 + 1 / a^2 = 18

     Hence the required value of a^2 + 1 / a^2 is 18

Answered by BrainlyMT
4

⠀⠀⠀⠀ \purple{\mathbb{ANSWER}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given that:-

\red{a -  \frac{1}{a}  = 4 }

⇝ (a -  \frac{1}{a}) {}^{2}  =  {(4)}^{2}  \\⇝  {a }^{2}  +  \frac{1}{ {a}^{2} }  - 2 \times a \times  \frac{1}{a}  = 16 \\ ⇝{a }^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 16 \\⇝  {a }^{2}  +  \frac{1}{ {a}^{2} }   = 16 + 2 \\⇝ {a }^{2}  +  \frac{1}{ {a}^{2} }   = 18

\red{  {a }^{2}  +  \frac{1}{ {a}^{2}  }= }{\boxed{\red{ 18 }}}

Similar questions