Math, asked by sarojakumar2005, 10 months ago

If (a-1/a)=√5 find the value of ••a+1/a and a​

Answers

Answered by Abhishek474241
7

Taking a =x

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

\tt{X-\dfrac{1}{X}}=√5

{\sf{\green{\underline{\large{To\:find}}}}}

\tt{X+\dfrac{1}{X}}

  • and a

{\sf{\pink{\underline{\Large{Explanation}}}}}

We know that

\boxed{\boxed{\sf\red{(a-b)^2=a^2+b^2-2ab}}}

Therefore

\tt{(X-\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

Solving

\tt{X-\dfrac{1}{X}}=√5

Both side squaring

\tt{(X-\dfrac{1}{X})^2}=(√5)²

\implies\tt{(X-\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}=5

\implies\tt{5=X^2+\dfrac{1}{X^2}-2\frac{1}{X}\times{X}}

\implies\tt{5=X^2+\dfrac{1}{X^2}-2}

\implies\tt{5+2=X^2+\dfrac{1}{X^2}}

\implies\tt{7=X^2+\dfrac{1}{X^2}}

Now

\tt{(X+\dfrac{1}{X})^2}

\tt{(X+\dfrac{1}{X})^2=X^2+\dfrac{1}{X^2}+2\frac{1}{X}\times{X}}

\implies\tt{(X-\dfrac{1}{X})^2=7+2\frac{1}{X}\times{X}}

\implies\tt{(X-\dfrac{1}{X})^2=7+2}

\implies\tt{(X-\dfrac{1}{X})^2=9}

\implies\tt{(X-\dfrac{1}{X})=3}

For x

\tt{X-\dfrac{1}{X}}=√5

\tt{(X-\dfrac{1}{X})=3}

___________________

2x=√5+3

=>x=\tt\dfrac{\sqrt{5}+3}{2}

Answered by BrainlyIAS
25

Formula Used

\bold{\bf{\blue{(x-y)^2=(x+y)^2-4xy}}}

Answer

Here , x = a & y = 1/a

\bold{(a-\frac{1}{a} )^2=(a+\frac{1}{a} )^2-4.a.\frac{1}{a} }\\\\\implies \bold{(\sqrt{5} )^2=(a+\frac{1}{a} )^2-4}\\\\\implies \bold{5+4=(a+\frac{1}{a} )^2}\\\\\implies \bold{(a+\frac{1}{a} )^2=9}\\\\\implies \bold{a+\frac{1}{a}=\sqrt{9}  }\\\\\implies \bold{\bf{\blue{a+\frac{1}{a}=\pm 3 }}}

\bold{(a-\frac{1}{a} )=\sqrt{5}\;and\;(a+\frac{1}{a} )=\pm 3}\\\\\bold{Now\;adding\;these\;two\;equations\;we\;,\;get\;,}\\\\\bold{2a=\sqrt{5}+3\;and\;2a=\sqrt{5}-3}\\\\\implies \bold{\bf{\blue{a=\frac{\sqrt{5}\pm 3}{2} }}}

Similar questions