If a + 1/a = 5, then a4 + 1/ a4 = ?
Answers
Answered by
3
Step-by-step explanation:
given a+1/a=5------eq(1)
on squaring both sides
(a+1/a)^2= a^2+1/a^2+2
(5)^2=a^2+1/a^2+2
25-2= a^2+1/a^2
23= a^2+1/a^2 --------eq(2)
on squaring (eq2) both sides
529= a^4+1/a^4+2
529-2= a^4+1/a^4
therefore a^4+1/a^4 = 527
Answered by
16
Correct Question :-
If a + 1/a = 5, then find the value of
Answer :-
Solution :-
a + 1/a = 5
Squaring on both sides
(a + 1/a)² = (5)²
⇒ (a + 1/a)² = 25
We know that
(x + y)² = x² + y² + 2xy
Here x = a, y = 1/a
By substituting the values
⇒ (a)² + (1/a)² + 2(a)(1/a) = 25
⇒ a² + 1²/a² + 2 = 25
⇒ a² + 1/a² = 25 - 2
⇒ a² + 1/a² = 23
Squaring on both sides
(a² + 1/a²)² = (23)²
⇒ (a² + 1/a²)² = 529
We know that
(x + y)² = x² + y² + 2xy
Here x = a², y = 1/a²
By substituting the values
⇒ (a²)² + (1/a²)² + 2(a²)(1/a²) = 529
⇒ (a²)² + (1/a²)² + 2 = 529
Similar questions