Math, asked by raushan0815, 1 year ago

if a+1/b=3, b+1/c=4,c+1/a=9/11 then find a×b×c

Answers

Answered by OrethaWilkison
51

Answer:

Given an equation: a+\frac{1}{b}=3 , b+\frac{1}{c}=4 and c+\frac{1}{a} =\frac{9}{11}.

Sum of these equation is, a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7+\frac{9}{11} =\frac{86}{11}.

Product of the above equation:  (a+\frac{1}{b})\cdot (b+\frac{1}{c})\cdot (c+\frac{1}{a})

On Simplify:

abc+a+c+\frac{1}{b} +b+\frac{1}{c}+\frac{1}{a} +\frac{1}{abc} = \frac{108}{11}

or

abc+(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c})+\frac{1}{abc}= \frac{108}{11}.

abc+\frac{86}{11}+\frac{1}{abc}=\frac{108}{11}

abc+\frac{1}{abc} = \frac{108}{11}-\frac{86}{11} = \frac{108-86}{11} =\frac{22}{11}

abc+\frac{1}{abc} =2.

Let abc be x

then;  x+\frac{1}{x} = 2 or

x^2-2x+1=0

On solving the quadratic equation; we have,

x=1 or

a\times b \times c=1


Answered by vipinvinod35
1

Answer:

Step-by-step explanation:

Answer:

Given an equation:  ,  and .

Sum of these equation is, .

Product of the above equation:  

On Simplify:

or

abc++= .

⇒ .

Let abc be x

then;   or

On solving the quadratic equation; we have,

x=1 or

Similar questions