if a^1/x=b^2/y=c^3/z and abc =1, prove that x+y+z=0
Answers
Your question needs a correction.
To prove : 6x + 3y + 2z = 0
Answer:
0 = x + y / 2 + z / 3
Or, 0 = 6x + 3y + 2z
Step-by-step explanation:
Given,
- a^( 1 / x ) = b^( 2 / y ) = c^( 3 / z )
- abc = 1
Let,
a^( 1 / x ) = b^( 2 / y ) = c^( 3 / z ) = k
Case 1 : a^( 1 / x ) = k
= > a^( 1 / x ) = k
= > { a^( 1 / x ) }^x = k^x { if a = b, then a^n = b^n }
= > a^( x × 1 / x ) = k^x
= > a = k^x ...( 1 )
Case 2 : b^( 2 / y ) = k
= > b^( 2 / y ) = k
= > { b^( 2 / y ) }^y = k^y
= > b^( 2 / y × y ) = k^y
= > b^2 = k^y
= > b = √( k^y ) or k^( y / 2 ) ...( 2 )
Case 3 : c^( 3 / z ) = k
= > c^( 3 / z ) = k
= > { c^( 3 / z ) }^z = k^z
= > c^3 = k^z
= > c = or k^( z / 3 ) ...( 3 )
Multiplying ( 1 ), ( 2 ) and ( 3 ) :
= > a × b × c = k^x × k^( y / 2 ) x k^( z / 3 )
= > abc = k^( x + y / 2 + z / 3 )
= > 1 = k^( x + y / 2 + z / 3 ) { given, abc = 1 }
= > k^0 = k^( x + y / 2 + z / 3 ) { any number having 0 as it's powerful is equal to 1 , k^0 = 1 , where k ≠ 0 }
= > 0 = x + y / 2 + z / 3
Or, 0 = 6x + 3y + 2z
Hence proved.