Math, asked by manipithadia, 4 months ago

 If a=10 ,d=3, n= 30, Find Sn , if the 30th term is 97​

Answers

Answered by apparaopaila78
0

Step-by-step explanation:

nth term of an AP is given by

t

n

=a+(n−1)d

In the given sequence, 'a' = 10, 'd' = -3, 'n' = 30.

So, 30th term =

t

30

=10+(30−1)(−3)

⟹t

30

=10−87=−77.

please like it and appreciate it

Answered by MrHyper
27

\Huge\tt\purple{answer:}

\sf{ }

\bf{Given:}

\sf{~~~~~~a=10}

\sf{~~~~~~d=3}

\sf{~~~~~~n=30}

\sf{~~~~~~a_{30}=97}

\sf{~~~~~~also,~~a_{n}=97}

\sf{~~~~~~\therefore S_{n}={\dfrac{n}{2}}[a+a_{n}]}

\sf{:→ S_{30}={\dfrac{30}{2}}[10+97]}

\sf{:→ S_{30}=15[107]}

\sf{:→ S_{30}={\purple{\underline{\boxed{\bf 1605}}}}}

\sf{~~~~\therefore S_{n}={\bf{1605}}}

\sf{ }

 \bf \large \underline{Note} :  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \sf The \: answer \: will \: be \: the \: same ,\: if \: we \: use \: the \: formula :  \\  \\  \sf sn =  \frac{n}{2}(2a + (n - 1)d) \\  \\  \sf Here \: we \: can \: use \: the \: other \: formula \: as \: a_{n}(last \: term) \\  \sf is \: given. \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Similar questions