Math, asked by pacchulal07, 3 months ago

If a^2 + 1/a^2 = 14 find a^3 +1/a^3​

Answers

Answered by amanraj56
1

Step-by-step explanation:

a²+1/a²=14

(a+1/a)²-2•a•1/a= 14

(a+1/a)²-2=14

(a+1/a)²= 16

a+1/a= 4

on cubing both side

(a+1/a)³= 4³

a³+1/a³+3a•1/a(a+1/a)=64

a³+1/a³+3(a+1/a)=64

a³+1/a³+3×4=64

a³+1/a³+12=64

a³+1/a³= 52

#666

Answered by Anonymous
0

Given that :

 {a}^{2}  +  \frac{1}{ {a}^{2} }  = 14

As we know that :

 {a}^{2}   +   \frac{1}{ {a}^{2}  }  = {(a +  \frac{1}{a})  }^{2} - 2a. \frac{1}{a}  \\  \\  =  > 14 =  {(a +  \frac{1}{a})  }^{2} - 2 \\  \\  =  >  {(a +  \frac{1}{a})  }^{2} = 14 + 2 = 16 \\  \\  =  > (a +  \frac{1}{a}) = 4

To find :

 {a}^{3}  +  \frac{1}{ {a}^{3} }  =  {(a +  \frac{1}{a} )}^{3}  - 3(a. \frac{1}{a})(a +  \frac{1}{a} ) \\  \\  =  > {a}^{3}  +  \frac{1}{ {a}^{3} } =  {(4)}^{3}  - 3 \times 1 \times 4 \\  \\  =  > {a}^{3}  +  \frac{1}{ {a}^{3} } = 64 - 12 = 52

So, the correct answer will be 52 ✔✔

______________________________

Hope it helps ☺

Fóllòw Më ❤

Similar questions