Math, asked by Aashee9, 1 year ago

If a^2+1/a^2=14 find the value of a^3+2/a^3.​

Answers

Answered by Anonymous
34

a² + \dfrac{1}{ {a}^{2} } = 14

__________ [GIVEN]

We have to find a³ + \dfrac{1*}{{a}^{3}}

______________________________

Solution:

=> a² + \dfrac{1}{ {a}^{2} } = 14

• Add 2 on both sides.

=> a² + \dfrac{1}{ {a}^{2} } + 2 = 14 + 2

• We can also write this equal like..

=> a² + \dfrac{1}{ {a}^{2} } + 2 \dfrac{a}{a} = 16

We know that

a² + b² + 2ab = (a + b)²

So..

=> ({a \:  +  \:  \dfrac{1}{a}) }^{2} = (4)²

=> a + \dfrac{1}{a} = { (\sqrt{4}) }^{2}

=> a + \dfrac{1}{a} = 4

• Now cube on both sides.

=> ({a \:  +  \:  \dfrac{1}{a}) }^{3} = (4)³

=> a³ + \dfrac{1}{ {a}^{3} } + 3(\dfrac{a}{a}) (a \:  +  \:  \dfrac{1}{a}) = 64

=> a³ + \dfrac{1}{ {a}^{3} } + 3 (a \:  +  \:  \dfrac{1}{a} ) = 64

=> a³ + \dfrac{1}{ {a}^{3} } + 3(4) = 64

=> a³ + \dfrac{1}{ {a}^{3} } = 64 - 12

______________________________

a³ + \dfrac{1}{ {a}^{3} } = 52

__________ [ANSWER]

Similar questions