If a^2 + 1/a^2 = 27 find a^3 - 1/a^3
Answers
Answer:
140
Step-by-step explanation:
Given---> a² + 1 / a² = 27
To find ---> value of ( a³ - 1 / a³ ).
Solution----> We know that,
( x - y )² = x² + y² - 2xy
Applying it for x = a and y = 1 / a , we get,
=> ( a - 1 / a )² = a² + 1 / a² - 2 × a × 1 / a
=> ( a - 1 / a )² = a² + 1 / a² - 2
=> ( a - 1 / a )² = ( a² + 1 / a² ) - 2
=> ( a - 1 / a )² = 27 - 2
=> ( a - 1 / a )² = 25
=> ( a - 1 / a ) = 5
We have an identity as follows,
( a³ - b³ ) = ( a - b ) ( a² + b² + ab )
Now ,
( a³ - 1 / a³ ) = ( a )³ - ( 1 / a )³
= ( a - 1 / a ) ( a² + 1 / a² + a × 1 / a )
= ( 5 ) { ( a² + 1 / a² ) + 1 }
= ( 5 ) { ( 27 ) + 1 }
= ( 5 ) ( 28 )
= 140
#Answerwithqualitu
#BAL
Answer:
Step-by-step explanation:
Given---> a² + 1 / a² = 27
To find ---> value of ( a³ - 1 / a³ ).
Solution----> We know that,
( x - y )² = x² + y² - 2xy
Applying it for x = a and y = 1 / a , we get,
=> ( a - 1 / a )² = a² + 1 / a² - 2 × a × 1 / a
=> ( a - 1 / a )² = a² + 1 / a² - 2
=> ( a - 1 / a )² = ( a² + 1 / a² ) - 2
=> ( a - 1 / a )² = 27 - 2
=> ( a - 1 / a )² = 25
=> ( a - 1 / a ) = 5
We have an identity as follows,
( a³ - b³ ) = ( a - b ) ( a² + b² + ab )
Now ,
( a³ - 1 / a³ ) = ( a )³ - ( 1 / a )³
= ( a - 1 / a ) ( a² + 1 / a² + a × 1 / a )
= ( 5 ) { ( a² + 1 / a² ) + 1 }
= ( 5 ) { ( 27 ) + 1 }
= ( 5 ) ( 28 )
= 140