Math, asked by ahamasarp, 1 month ago

If A = {2, 3},B = {3, 4} and C = {4, 5}, show that A × (B ∩ C) = (A × B) ∩ (A × C).

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

A = {2, 3}

B = {3, 4}

and

C = {4, 5}

\large\underline{\sf{To\:show - }}

A × (B ∩ C) = (A × B) ∩ (A × C).

\large\underline{\sf{Solution-}}

Given that,

A = {2, 3}

B = {3, 4}

and

C = {4, 5}

Consider,

\rm :\longmapsto\:B\cap C = \{3,4\}\cap \{4,5\} \:  =  \: \{4\}

Now,

\rm :\longmapsto\:A \times (B\cap C)

\rm \:  =  \:\{2,3\} \times \{4\}

\rm \:  =  \:\{(2,4), \: (3,4)\}

So,

 \red{\rm :\longmapsto\:A \times (B\cap C) =  \:\{(2,4), \: (3,4)\} -  -  - (1)}

Now, Consider

\rm :\longmapsto\:A \times B

\rm \:  =  \:\{2,3\} \times \{3,4\}

\rm \:  =  \:\{(2,3),(2,4),(3,3),(3,4)\}

\bf\implies \:A \times B=  \:\{(2,3),(2,4),(3,3),(3,4)\}

Now, Consider

\rm :\longmapsto\: A\times C

\rm \:  =  \:\{2,3\} \times \{4,5\}

\rm \:  =  \:\{(2,4),(2,5),(3,4),(3,5)\}

\bf\implies \:A \times C =  \:\{(2,4),(2,5),(3,4),(3,5)\}

Hence,

\bf\implies \:(A \times B)\cap (A \times C) =  \:\{(2,4),(3,4)\} -  - (2)

So, from equation (1) and equation (2), we concluded that

\bf\implies \:A \times (B\cap C) = (A \times B)\cap (A \times C)

Additional Information :-

 \boxed{ \bf{ \: A \times B \:  \ne \: B \times A}}

 \boxed{ \bf{ \: n(A \times B) = n(A) \times n(B)}}

 \boxed{ \bf{ \: A \times  \phi \:  =  \:  \phi}}

Similar questions