if a= 2+√3 find the value of (a-1/a)² and (a+1/a)²
Answers
Solution :
Given value of a :
a = 2 + √3.
Let us find the reciprocal of a or 1/a.
1/a
=> 1/( 2 + √3 )
=> ( 2-√3)/( 2+√3)(2-√3)
=> 2-√3
Now ,
a + 1/a
=> 2 + √3 + 2 - √3
=> 4
a - 1/a
=> 2 + √3 - (2-√3)
=> 2 + √3 - 2 + √3
=> 2√3
(a + 1/a)² = ( 4)² = 16
( a - 1/a)² = ( 2√3) = 12 .
This is the required answer .
_______________________________
Additional Information :
(a + b)² = a² + 2ab + b²
(a + b)² = (a - b)² + 4ab
(a - b)² = a² - 2ab + b²
(a - b)² = (a + b)² - 4ab
a² + b² = (a + b)² - 2ab
a² + b² = (a - b)² + 2ab
2 (a² + b²) = (a + b)² + (a - b)²
4ab = (a + b)² - (a - b)²
ab = {(a + b)/2}² - {(a-b)/2}²
(a + b + c)² = a² + b² + c² + 2(ab + bc + ca)
(a + b)³ = a³ + 3a²b + 3ab² b³
(a + b)³ = a³ + b³ + 3ab(a + b)
(a - b)³ = a³ - 3a²b + 3ab² - b³
a³ + b³ = (a + b)( a² - ab + b² )
a³ + b³ = (a + b)³ - 3ab( a + b)
a³ - b³ = (a - b)( a² + ab + b²)
a³ - b³ = (a - b)³ + 3ab ( a - b )
_______________________________