Math, asked by Sipundash6917, 10 months ago

If a =2+/3. than find the vaalue of a+1/a

Answers

Answered by Anonymous
4

\huge\mathfrak{Answer:}

Given:

  • We have been given that a = 2+√3.

To Find:

  • We need to find the value of a - 1/a

Solution:

 \sf{As \: it \: is \: given \: that \: a = 2 +  \sqrt{3} }

 \implies\sf{ \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} } }

Now, on rationalizing the denominator, we have

 \sf{ \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

\sf{Using \: the \: identity \: : (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }

 \sf{We \: have}

\implies\sf{ \dfrac{1}{a} = \dfrac{1-\sqrt{3}}{(2)^2-(\sqrt{3})^2}}

 \implies\sf{ \dfrac{1}{a}  =  \dfrac{2 -  \sqrt{3} }{4 - 3} }

 \implies\sf{ \dfrac{1}{a} = 2 -  \sqrt{3} }

 \sf{Now \: we \: need \: to \: find \: the \: value \: of \: a -  \dfrac{1}{a}}

 \sf{We \: have}

 \sf{a -  \dfrac{1}{a}  = (2 +  \sqrt{3} ) - (2 -  \sqrt{3} )}

 \implies\sf{a -  \dfrac{1}{a}   = 2 +\sqrt{3}  - 2 +  \sqrt{3} }

 \implies\sf{a -  \dfrac{1}{a}  =  \sqrt{3}  +  \sqrt{3} }

 \implies\sf{a -  \dfrac{1}{a}  =  \sqrt[2]{3} }

Hence, the value of a - 1/a is 2√3.

Similar questions