Math, asked by np700307, 7 months ago

if a =2+√3 them find the value of a-1/a​

Answers

Answered by Asterinn
4

Given :

  • a =2+√3

To find :

  • a-1/a

Solution :

a = 2 +  \sqrt{3}

 \dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} }

Now we will rationalise the denominator :-

\dfrac{1}{a}  =  \dfrac{1}{2 +  \sqrt{3} } \times \dfrac{2  -  \sqrt{3}}{2  -   \sqrt{3} }

we know that :- (a-b)(a+b) = a²-b²

\dfrac{1}{a}  =   \dfrac{2  -  \sqrt{3}}{ {(2)}^{2}   -    {(\sqrt{3})}^{2}  }

\dfrac{1}{a}  =   \dfrac{2  -  \sqrt{3}}{ 4   -    3 }

\dfrac{1}{a}  =   \dfrac{2  -  \sqrt{3}}{ 1 }

\dfrac{1}{a}   = 2  -  \sqrt{3}

Now we have to find the value of :- a - 1/a

a -  \frac{1}{a}  = 2 +  \sqrt{3}  -(  2  -   \sqrt{3})

a -  \frac{1}{a}  = 2 +  \sqrt{3}  -  2   +    \sqrt{3}

a -  \frac{1}{a}  = 2  - 2 +  \sqrt{3}     +    \sqrt{3}

a -  \frac{1}{a}  = 0 + 2 \sqrt{3}

a -  \frac{1}{a}  =  2 \sqrt{3}

Answer : 2√3

Similar questions