Math, asked by gulabrao7257, 10 months ago

x^2+√5x-60=0 solve the quadratic equation

Answers

Answered by Anonymous
4

 {x}^{2}  +  \sqrt{5} x - 60 = 0 \\  \\  \\  {x}^{2}  + 2 \times  \frac{ \sqrt{5} }{2}  \times x = 60 \\  \\ adding \:  { \left(  \frac{ \sqrt{5} }{2}   \right)}^{2} both \: sides \\  \\  {x}^{2}  + 2 \times   \frac{ \sqrt{5} }{2}  \times x +  { \left( \:  \frac{ \sqrt{5} }{2}  \right)}^{2}  = 60 +  { \left( \:   \frac{ \sqrt{5} }{2}  \right)}^{2}  \\  \\  { \left( \: x +  \frac{ \sqrt{5} }{2}  \right)}^{2}  =  \frac{240 + 5}{4}  \\  \\ { \left( \: x +  \frac{ \sqrt{5} }{2}  \right)}^{2} =  \frac{245}{4}  \\  \\ First \: zero =  \frac{ \sqrt{245} }{2}  -  \frac{ \sqrt{5} }{2}  \Rightarrow  \frac{7 \sqrt{5}  -  \sqrt{5} }{2}  \Rightarrow  \frac{6 \sqrt{5} }{2}  \\ \qquad \qquad \; \Rightarrow 3 \sqrt{5}  \\  \\ Second \: zero =   - \frac{  \sqrt{245}  }{2}  -  \frac{ \sqrt{5} }{2}  \Rightarrow   \frac{ - 7 \sqrt{5} -  \sqrt{5}  }{2}  \Rightarrow   \frac{ - 8 \sqrt{5} }{2}  \\  \qquad \qquad \quad  \Rightarrow  - 4 \sqrt{5}  \\  \\ Zeroes \: are \: \bold{3 \sqrt{5}}  \: and \: \bold{ - 4 \sqrt{5}}

Answered by Zeel8035
1

Answer:

Step-by-step explanation:

Attachments:
Similar questions