Math, asked by dilkhush7441, 8 months ago

If a=2+√3, then a+1/a=?


Answers

Answered by Anonymous
33

GIVEn

If a=2+√3, then a+1/a=?

SOLUTIOn

  • If a = 2 + √3

Then,

→ 1/a = 1/2 + √3

Rationalise its denominator

→ 1/a = 1/2 + √3 × 2 - √3/2 - √3

→ 1/a = 2 - √3/(2)² - (√3)²

→ 1/a = 2 - √3/4 - 3

→ 1/a = 2 - √3

So, the value of a + 1/a

  • a = 2 + √3
  • 1/a = 2 - √3

→ a + 1/a

→ 2 + √3 + 2 - √3

→ 4

Answered by Anonymous
127

\huge\blue{\tt{Question:-}}

 If \: a = (2 +  \sqrt{3} ) , \: then \: a +  \frac{1}{a}  = ?

\huge\blue{\tt{Solution:-}}

a +  \frac{1}{a}  = (2 +  \sqrt{3} ) +  \frac{1}{(2 +  \sqrt{3} )}

solving \:  \frac{1}{a}

Using rationalisation,

 \frac{1}{(2 +  \sqrt{3} )}  \times  \frac{(2 -  \sqrt{3} )}{(2 -  \sqrt{3} )}

Since, (a+b)(a-b) =  {a}^{2}  -  {b}^{2}

Therefore,

 =  >  \frac{(2 -  \sqrt{3}) }{ {(2)}^{2}  -  {( \sqrt{3} )}^{2} }

 =  >  \frac{(2 -  \sqrt{3}) }{4 - 3}

 =  >  \frac{(2 -  \sqrt{3}) }{1}  = (2 -  \sqrt{3} )

Now, a +  \frac{1}{a}  = (2  +  \sqrt{3} ) + (2  -   \sqrt{3} )

=> 2 + 2

=> 4.

Hence, 4 is the required answer.

Similar questions