Math, asked by Sarah6494, 1 year ago

If a = 2 + √3 , then find a^2 + 1/a^2 .

Answers

Answered by yash6989262
1
here is your answer
a=2+ root 3

a^2+1/a^2
(2+root 3)^2+1/(2+ root 3)^2
(4+3)+1/4+3
7+1/7
8/7
1.14

yash6989262: plz follow me
Answered by Anonymous
1

 \sf{a = 2 +  \sqrt{3} }

 \sf{\frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} } }

\sf{\frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} } }

\sf{\frac{1}{a}}  =  \frac{2 -  \sqrt{3} }{ {2}^{2} - {(\sqrt{3})}^{2}  }

\sf{\frac{1}{a}  =2 -  \sqrt{3} }

\sf{ {a}^{2}  +  \frac{1}{ {a}^{2} } } =  {(2 +  \sqrt{3} })^{2}  +  {(2 -  \sqrt{3} })^{2}

4 + 3 + 4√3 + 4 + 3 - 4√3

\sf{4+3+4+3}

\sf{= 14}

Similar questions