If a = 2+ √3 then find the value of a - 1 /a
Answers
Answered by
1
Here is the answer you were looking for:
a = 2 + \sqrt{3} \\ \\ \frac{1}{a} = \frac{1}{2 + \sqrt{3} } \\
On rationalizing the denominator we get,
\frac{1}{a} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\
Using the identity :
(x + y)(x - y) = {x}^{2} - {y}^{2}
\frac{1}{a} = \frac{2 - \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3} )}^{2} } \\ \\ \frac{1}{a} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{a} = 2 - \sqrt{3} \\ \\ a - \frac{1}{a}
Putting the values,
a - \frac{1}{a} = (2 + \sqrt{3} ) - (2 - \sqrt{3} ) \\ \\ a - \frac{1}{a} = 2 + \sqrt{3} - 2 + \sqrt{3} \\ \\ a - \frac{1}{a} = \sqrt{3} + \sqrt{3} \\ \\ a - \frac{1}{a} = 2 \sqrt{3}
Hope this helps!!!
.....plz mark it as the brainliest of u r satisfied !!
a = 2 + \sqrt{3} \\ \\ \frac{1}{a} = \frac{1}{2 + \sqrt{3} } \\
On rationalizing the denominator we get,
\frac{1}{a} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\
Using the identity :
(x + y)(x - y) = {x}^{2} - {y}^{2}
\frac{1}{a} = \frac{2 - \sqrt{3} }{ {(2)}^{2} - {( \sqrt{3} )}^{2} } \\ \\ \frac{1}{a} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{a} = 2 - \sqrt{3} \\ \\ a - \frac{1}{a}
Putting the values,
a - \frac{1}{a} = (2 + \sqrt{3} ) - (2 - \sqrt{3} ) \\ \\ a - \frac{1}{a} = 2 + \sqrt{3} - 2 + \sqrt{3} \\ \\ a - \frac{1}{a} = \sqrt{3} + \sqrt{3} \\ \\ a - \frac{1}{a} = 2 \sqrt{3}
Hope this helps!!!
.....plz mark it as the brainliest of u r satisfied !!
Similar questions
Math,
4 months ago
Math,
4 months ago
English,
4 months ago
English,
9 months ago
Business Studies,
9 months ago
World Languages,
1 year ago
Biology,
1 year ago