Math, asked by satyammridul23379, 7 months ago

If a=2+√3, then find value of √a-√(1/a)

Answers

Answered by pakhi1234575
0

2√3 is the answer of this question

Answered by mathdude500
11

\large\underline\blue{\bold{Given \:  Question :-  }}

\bf \:If  \: a = 2 +  \sqrt{3}  \: then \: find \:  \sqrt{a}  -  \dfrac{1}{ \sqrt{a} }

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:\huge\red{AηsωeR : } ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:❥︎ \: Step :- 1.

\sf \:  ⟼a = 2 +  \sqrt{3}

\sf \:  ⟼\dfrac{1}{ a}  = \dfrac{1}{2  +   \sqrt{3} }

❥︎ On rationalizing the denominator, we get

\sf \:  ⟼\dfrac{1}{ a}  = \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\sf \:  ⟼\dfrac{1}{ a}  = \dfrac{ 2 -  \sqrt{3}  }{ {(2)}^{2} -  {( \sqrt{3}) }^{2}  }

\sf \:  ⟼\dfrac{1}{ a}  = \dfrac{2 -  \sqrt{3} }{4 - 3}

\bf\implies \: \dfrac{1}{ a}  = 2 -  \sqrt{3}

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf \:❥︎ \: Step :- 2.

\bf \:  ⟼ Consider \:  { \bigg( \sqrt{a} -  \dfrac{1}{ \sqrt{a} } \bigg )}^{2}

\sf \:  ⟼ \: a + \dfrac{1}{a}  - 2 \times   \cancel{\sqrt{ a} } \times \dfrac{1}{  \cancel{\sqrt{a} }}

\bf \:  ⟼ a + \dfrac{1}{a}  - 2

\bf \:  ⟼ 2 +  \sqrt{3}  + 2 -  \sqrt{3}  - 2

\bf \:  ⟼ 2 +   \cancel{\sqrt{3}}  + 2 -   \cancel{\sqrt{3} } -  \cancel{2}

\bf\implies \:{ \bigg( \sqrt{a} -  \dfrac{1}{ \sqrt{a} } \bigg )}^{2}  = 2

\bf\implies \:{ \bigg( \sqrt{a} -  \dfrac{1}{ \sqrt{a} } \bigg )} =  \sqrt{2}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Hence, \:  \sqrt{a} - \dfrac{1}{ \sqrt{a} }  =  \sqrt{2}  }}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions
Math, 3 months ago