Math, asked by KaminiRaghuwanshi, 1 year ago

if a=2+√3, then find value of a-1/a

Answers

Answered by DaIncredible
1307
Heya friend,
Here is the answer you were looking for:
a = 2 +  \sqrt{3}  \\  \\  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \\

On rationalizing the denominator we get,

 \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3}  }   \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\

Using the identity :

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{  {(2)}^{2}  - {( \sqrt{3} )}^{2} }  \\  \\   \frac{1}{a}  =  \frac{2  -  \sqrt{3} }{4 - 3}  \\  \\  \frac{1}{a}  = 2 -   \sqrt{3}  \\  \\ a -  \frac{1}{a}

Putting the values,

a -  \frac{1}{a}  = (2 +  \sqrt{3} ) - (2 -  \sqrt{3} ) \\  \\ a -  \frac{1}{a}  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  \\ a -  \frac{1}{a}  =  \sqrt{3}  +  \sqrt{3}  \\  \\ a -  \frac{1}{a}  = 2 \sqrt{3}

Hope this helps!!!

Feel free to ask in the comment section if you have any doubt regarding to my answer...

@Mahak24

Thanks...
☺☺

nancyyy: wah mahak wah ^_^"
DaIncredible: ;)
Lalit1268: ^ _ ^"
Answered by smithasijotsl
17

Answer:

a - \frac{1}{a}  =2√3

Step-by-step explanation:

Given,

a = 2+√3

To find,

a - \frac{1}{a}

Solution:

a = 2+√3

\frac{1}{a} = \frac{1}{2+\sqrt{3} }

The rationalizing factor is 2 - \sqrt{3}

\frac{1}{2+\sqrt{3} } = \frac{1}{2+\sqrt{3} } X \frac{2-\sqrt{3}}{2-\sqrt{3}}

= \frac{2-\sqrt{3}}{4-3}

=  2 - √3

a - \frac{1}{a}  = 2+√3 - (2-√3)

= 2+√3 - 2+√3

=2√3

∴a - \frac{1}{a}  =2√3

#SPJ2

Similar questions