Math, asked by priyalsharma1, 9 months ago

if a =2+√3 what would be the value of a+1/a​

Answers

Answered by sg2544
1

Given :-

a = 2 +  \sqrt{3}

To Find :-

(a+1)/a = ?

Solution :-

 =  >  \frac{a + 1}{a}

 =  >  \frac{2 +  \sqrt{3} + 1 }{2 +  \sqrt{3} }

 =  >  \frac{3 +  \sqrt{3} }{2 +  \sqrt{3} }

At this stage we have to use determenent to get value easily.

if deteminent is "x+y" we should use the appropriate as "x-y".

Then only we can remove that root easily.

 =  >  \frac{3 +  \sqrt{3} }{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

 =  >  \frac{(3 +  \sqrt{3})(2 -  \sqrt{3})  }{(2 + \sqrt{3} )(2 -  \sqrt{3}) }

 =  >  \frac{6 - 3 \sqrt{3} + 2 \sqrt{3} - ( \sqrt{3}  {}^{2}  ) }{(2) {}^{2} - ( \sqrt{3}) {}^{2}   }

 =  >  \frac{6 -  \sqrt{3} - 3 }{4 - 3}

 =  >  \frac{3 -  \sqrt{3} }{1}

 =  > 3 -  \sqrt{3}

Formulas or rules :-

(a+b)(a-b) = (a^2 - b^2)

Answered by amankumaraman11
1

Given,

 \boxed{ \boxed{ \rm{a = 2 +  \sqrt{3} } \:  \: } \:  \:  \: }

To find :-  \boxed{ \rm{a +  \frac{ 1}{a} }\: \:  \:  \: }

 \underline {\huge \dag \: \:  \text{ \red{S}O\red{L}U\red{T}I\red{O}N :}}

Here,

 \boxed{ \rm{}a = 2 +  \sqrt{3}  \:  \:  \: }

 \boxed{ \rm \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \:  \: }

Now, Simplifying the value 1/a ,

 \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ =  >   \frac{2 -  \sqrt{3} }{ {(2)}^{2} -  {( \sqrt{3} )}^{2}  }   \\ \\  =  >  \frac{2 -  \sqrt{3} }{4 - 3}   \:  \: \:  \:  = 2 -  \sqrt{3}

Thus,

 \huge =  >  \:  \:   \rm{}a +  \frac{1}{a}  \\  \\   \bf=  (  2 +  \sqrt{3} ) + (2 -  \sqrt{3})  \\ \bf  =  \: 2 +  \cancel{ \sqrt{3} }+ 2 -  \cancel{\sqrt{3}}  \:  \:  \:  \:  \:  \:   \: =   \red4

Hence,

\boxed {\boxed {\boxed { \large \boxed { \:  \: \rm{a +  \frac{1}{a}  = 4} \:  \:  \:  \:  \: }}}}

Similar questions