Math, asked by singhriya159, 8 months ago

if a ^2 - 3a +1 =0 and a is not equal to 0 find a+1/a​

Answers

Answered by Anonymous
23

GIVEN :-

  • \rm{a^2-3a+1 =0}.

  • a is not equal to zero.

TO FIND :-

  • Find the value of \rm{a+\dfrac{1}{a}}.

Now,

\implies\rm{a^2-3a+1 = 0}

\implies\rm{a^2-3a = -1}

\implies\rm{a(a-3) = -1}

\implies\rm{a-3 = \dfrac{-1}{a}}

\implies\rm{a - 3 +\dfrac{1}{a} = 0}

\implies\rm{a +\dfrac{1}{a} = 3}.

Hence, The value of a +1/a is 3.

SOME IDENTITIES

\boxed{\begin{minipage}{7cm}\\ \\   \sf\bf{(a+b)^2= $ \tt a^2+2ab+b^2 $}\\ \\  \tt\bf{(a-b)^2=$ \tt a^2-2ab+b^2 $}\\ \\ \rm\bf{a^3+b^3= $ \tt (a+b) (a^2-ab+b^2)  $}\\ \\ \rm\bf{a^3-b^3 = $ \tt (a-b) (a^2+ab+b^2) $}\\ \\ \rm\bf {(a+b+c)^2 =$\tt a^2+b^2+c^2+2ab+2bc+2ac $}\end{minipage}}

Answered by ThakurRajSingh24
29

Given :-

  •  \rm \: a {}^{2}  - 3a \:  + 1 = 0
  •  \rm \: a ≠ 0

To Find :-

  •  \rm \: Calculate \:  \:  the \:  \:  value \:  \:  of  \:  \: a   \:  +  \:  \frac{1}{a} .

Solution :-

 \rm \implies \: a {}^{2}  - 3a + 1 = 0

 \rm \implies a(a - 3) + 1 = 0

 \rm \implies a  (a - 3) =  - 1

 \rm \implies a - 3 =   \frac{ -1 }{a}

 \rm \implies a \:  - 3 +  \frac{1}{a}  = 0

\rm \implies  \red{ \rm{a \:  +  \frac{1}{a} = 3 }}

 \rm \: \bold { \underline{Thus,  \:  \: the \:  \: value \: \:  of \:  \: a +  \frac{1}{a} \:  \:  is  \: \: 3.}}

Similar questions