if a^2+b^2+c^2=250andab+bc+ca=3,thenfind a+b+c
Answers
Answered by
1
by formula ,
(a + b + c)^2= a^2 + b^2 + c^2 + 2(ab + bc + ca),
since, a^2 + b^2 + c^2 = 250 and ab + bc + ca = 3,
(a + b + c)^2 = 250 + 2(3)
= 256
= 16^2
therefore: a + b + c = 16
(a + b + c)^2= a^2 + b^2 + c^2 + 2(ab + bc + ca),
since, a^2 + b^2 + c^2 = 250 and ab + bc + ca = 3,
(a + b + c)^2 = 250 + 2(3)
= 256
= 16^2
therefore: a + b + c = 16
Answered by
1
Given that a^2 + b^2 + c^2 = 250 and ab + bc + ca = 3.a + b + c = ?
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= a^2 + b^2 + c^2 + 2(ab + bc + ca)
= 250 + 2(3)
= 256.
(a + b + c) =
(a + b + c) = 16.
Hope this helps!
(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca
= a^2 + b^2 + c^2 + 2(ab + bc + ca)
= 250 + 2(3)
= 256.
(a + b + c) =
(a + b + c) = 16.
Hope this helps!
Similar questions