If a^2 + b^2 + c^2 = 5 and ab + bc + ca = 10, find the value of a+ b + c.
Answers
Answered by
21
S͟o͟l͟u͟t͟i͟o͟n͟!
(a + b + c)² = a²+ b² + c² + 2(ab + bc + ca)
= 5 + 2 × 10 = 5 + 20 = 25
= a + b + c = ±√25
= ±5
glad help you
thanks...☺
Answered by
9
Given, a^2 + b^2 + c^2 = 5 ...( i )
ab + bc + ca = 10 ...( ii )
Multiply by 2 on both sides of ( ii ),
⇒ 2( ab + bc + ca ) = 2( 10 )
⇒ 2( ab + bc + ca ) = 20 ...( iii )
Then, adding ( i ) and ( ii ),
⇒ a^2 + b^2 + c^2 + 2( ab + bc + ca ) = 5 + 20
⇒ a^2 + b^2 + c^2 + 2( ab + bc + ca ) = 25
We know that the value of a^2 + b^2 + c^2 + 2( ab + bc + ca ) in factorized form is ( a + b + c )^2.
∴ ( a + b + c )^2 = 25
⇒ ( a + b + c )^2 = ( 5 )^2 or ( - 5 )^2
⇒ ( a + b + c ) = 5 or - 5
Therefore the value of a + b + c is 5 or - 5.
Similar questions