IF A^2+B^2+C^2=74 and ab+bc+ac=61,find a+b+c
Answers
Answered by
6
Answer:
14
Step-by-step explanation:
We will use the identity :
( a+b+c )^2 = a^2 + b^ + c^2 + 2( ab + bc + ca )
( we will put the values given to us. )
( a+b+c ) ^2 = 74 + 2( 61 )
( a+b+c ) ^2= 74 + 122
( a+b+c )^2 = 196.
a+b+c = √196
( square root of 196 is 14 )
a+b+c = 14
Answered by
1
A^2+B^2+C^2=74
AB+BC+CA=64. ,(A+B+C)^2=A^2+B^2+C^2+2(AB+BC+CA)=(A+B+C)^2=74+2(61)=74+122=196=A+B+C=14.
Similar questions