If (a^2+b^2+c^2)=89 and (ab-bc-ca)=16 find the value of (a+b-c)
Answers
Answered by
17
Answer:
We know that
(a+b-c)² = a²+b²+c² + 2 (ab-bc-ca)
substituting given values
(a+b-c)² = 89+2(16)
(a+b-c)² = 121
(a+b-c) = 11
HOPE IT IS HELPFUL
Answered by
14
Given:
- (a² + b² + c²) = 89
- ab - bc - ca = 16
To Find:
- a + b - c
Solution:
We know that;
⇒ (a + b + (-c))² = a² + b² + (-c)² + 2ab + 2(b)(-c) + 2(-c)(a)
(Using (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca)
⇒ (a + b + (-c))² = 89 + 2(ab - bc -ca)
⇒ (a + b - c)² = 89 + 2(16)
⇒ (a + b - c)² = 89 + 32
⇒ (a + b - c)² = 121
⇒ (a + b - c) = √121
⇒ (a + b - c) = 11
∴ Final Answer: (a + b - c) = 11
Similar questions
Hindi,
4 months ago
Physics,
4 months ago
Math,
8 months ago
English,
11 months ago
Social Sciences,
11 months ago