Math, asked by sanjeevkumar3175, 11 months ago

If a = 2 + root under 3 then find the value of a- 1/a . Spammers are not allowed .​

Answers

Answered by Anonymous
12

\blue{\bold{\underline{\underline{Answer:}}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

Given,

a = 2 +  \sqrt{3}  \\  \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }

Rationalizing the denominator,

 \frac{1}{a}  =  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

Using identity :

(x + y)(x - y) = x^2 - y^2

 \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{ {2}^{2} -  { \sqrt{3} }^{2}  }  \\  \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \frac{1}{a}  = 2 -  \sqrt{3}

Now,

a -  \frac{1}{a}  = 2 +  \sqrt{3}  - (2 -  \ sqrt{3} ) \\  = 2 +  \sqrt{3}  - 2 +  \sqrt{3}  \\  =  \sqrt{3}  +  \sqrt{3}  \\  = 2 \sqrt{3}

Similar questions