Math, asked by vedmohod2007, 2 months ago

If a=2+sqrt(3)+sqrt(5) and b=3+sqrt(3)-sqrt(5) find the value of (a-2)^(2)+(b-3)^(2)

Answers

Answered by Anonymous
13

Answer :-

16

Given :-

a = 2 +  \sqrt{3}  +  \sqrt{5}

b = 3 +  \sqrt{ 3}  -  \sqrt{5}

To find :-

(a - 2) {}^{2}  + (b - 3) {}^{2}

SOLUTION:-

Substitute the values of and b

(a - 2) {}^{2}  + (b - 3) {}^{2}  =

(2 +  \sqrt{3}  +  \sqrt{5}  - 2) {}^{2}  + (3 +  \sqrt{3} -  \sqrt{5}  - 3) {}^{2}

( \sqrt{3}  +  \sqrt{5} ) {}^{2}  + ( \sqrt{3}  -  \sqrt{5} ) {}^{2}

Expanding the first term by using

(a+b)² = a² + 2ab + b²

Expanding the second term by using

(a-b)² = a² - 2ab + b²

=( \sqrt{3} ) {}^{2}  +  \sqrt{5} ) {}^{2}  + 2 \sqrt{3} . \sqrt{5}  + ( \sqrt{3} ) {}^{2} + ( \sqrt{5}  ) {}^{2}  - 2 \sqrt{3} . \sqrt{5}

= 3 + 5 + 2 \sqrt{15}  + 3 + 5 - 2 \sqrt{15}

= 3 + 5 + 2 \not \sqrt{15}  + 3 + 5 \not - 2 \sqrt{15}

= 3 + 5 + 3 + 5

 = 8 + 8

= 16

\red{\boxed{So,\: the\: value\:of \:(a - 2)^2 + (b - 3)^2 = 16}}

Know more algebraic identities:-

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

(a +b)(a-b) = a² - b²

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Answered by EmperorSoul
0

Answer :-

16

Given :-

a = 2 +  \sqrt{3}  +  \sqrt{5}

b = 3 +  \sqrt{ 3}  -  \sqrt{5}

To find :-

(a - 2) {}^{2}  + (b - 3) {}^{2}

SOLUTION:-

Substitute the values of and b

(a - 2) {}^{2}  + (b - 3) {}^{2}  =

(2 +  \sqrt{3}  +  \sqrt{5}  - 2) {}^{2}  + (3 +  \sqrt{3} -  \sqrt{5}  - 3) {}^{2}

( \sqrt{3}  +  \sqrt{5} ) {}^{2}  + ( \sqrt{3}  -  \sqrt{5} ) {}^{2}

Expanding the first term by using

(a+b)² = a² + 2ab + b²

Expanding the second term by using

(a-b)² = a² - 2ab + b²

=( \sqrt{3} ) {}^{2}  +  \sqrt{5} ) {}^{2}  + 2 \sqrt{3} . \sqrt{5}  + ( \sqrt{3} ) {}^{2} + ( \sqrt{5}  ) {}^{2}  - 2 \sqrt{3} . \sqrt{5}

= 3 + 5 + 2 \sqrt{15}  + 3 + 5 - 2 \sqrt{15}

= 3 + 5 + 2 \not \sqrt{15}  + 3 + 5 \not - 2 \sqrt{15}

= 3 + 5 + 3 + 5

 = 8 + 8

= 16

\red{\boxed{So,\: the\: value\:of \:(a - 2)^2 + (b - 3)^2 = 16}}

Know more algebraic identities:-

( a + b )² + ( a - b)² = 2a² + 2b²

( a + b )² - ( a - b)² = 4ab

(a +b)(a-b) = a² - b²

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Similar questions