Math, asked by amanspace76d, 1 month ago

If a = -25, b = 20 cm and c = -10, verify that:
(i) a + (b + c) = (a + b) + c
(ii) a × (b + c) = a × b + a × c

Answers

Answered by sethrollins13
61

Given :

  • a = -25
  • b = 20
  • c = -10

To Verify :

  • (i) a + (b + c) = (a + b) + c
  • (ii) a × (b + c) = a × b + a × c

Solution :

(i) a + (b + c) = (a + b) + c

Putting Values :

\longmapsto\tt{-25+(20+(-10)=(-25+20)+(-10)}

\longmapsto\tt{-25+(20-10)=-5-10}

\longmapsto\tt{-25+10=-5-10}

\longmapsto\tt\bf{-15=-15}

Hence Verified

(ii) a × (b + c) = a × b + a × c

Putting Values :

\longmapsto\tt{-25\times{(20+(-10)}=-25\times{20}+(-25)\times{-10}}

\longmapsto\tt{-25\times{(20-10}=-25\times{20}+(-25)\times{-10}}

\longmapsto\tt{-25\times{10}=-25\times{20}+250}

\longmapsto\tt{-250=-500+250}

\longmapsto\tt\bf{-250=-250}

Hence Verified

Answered by Itzheartcracer
25

Given :-

a = -25

b = 20

c = 10

To Find :-

(i) a + (b + c) = (a + b) + c

(ii) a × (b + c) = a × b + a × c

Solution :-

(i) a + (b + c) = (a + b) + c

Taking LHS

a + (b + c)

-25 + [20 + (-10)]

-25 + [20 - 10]

-25 + 10

-15

Taking RHS

(a + b) + c

[(-25) + 20] + (-10)

[-25 + 20] - 10

-5 - 10

-15

Hence, Proved

(ii)  a × (b + c) = a × b + a × c

Taking LHS

-25 × [20 + (-10)]

-25 × [20 - 10]

-25 × 10

-250

Taking RHS

[(-25) × 20] + [(-25) × (-10)]

-500 + (250)

-500 + 250

-250

Hence, Proved

Similar questions