If a = 2i – 3j + k and b = 3i + 4j + xk are mutually perpendicular, find the value of x.
Answers
Answered by
0
Answer:
When two vectors are perpendicular, you just gotta find their dot product and equate that to zero.
Now what's DOT Product?
Well,put simply,it is:
(ax)+(by)+(cz)
when the two given vectors are ai+bj+ck and xi+yj+zk; i,j,k being three unit vectors perpendicular to each other(representative of the coordinate axes)
Now comparing your question with the above stuff,
2i+2j+3k is equivalent to ai+bj+ck
and
3i+6k+nk=3i+0j+(6+n)k
the dot product is sum of the product of the coefficients,that is
2*3+3*(6+n)
Now equating this to zero and dividing both sides by 3, we get
2+6+n=0 which gives n=-8
hope it helps you
please mark me as brainlist please
Similar questions