Math, asked by rajchitransh2005, 3 months ago

if a = 3-2√2 then find a²+1/a²​

Answers

Answered by Anonymous
12

Given

 \rm \: :  \implies \: a = 3 - 2 \sqrt{2}

To Find

 \rm \: :  \implies \: \:  {a}^{2}  +  \dfrac{1}{ {a}^{2} }

If

 \rm \: :  \implies \: a = 3 - 2 \sqrt{2}

Then

 \rm \: :  \implies  \dfrac{1}{a}  =  \dfrac{1}{3 - 2 \sqrt{2} }

Rationalize The Denominator

\rm \: :  \implies \:  \:  \dfrac{1}{a}  =  \dfrac{1}{3 -  2\sqrt{2} }  \times  \dfrac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }

\rm \: :  \implies \:  \:  \dfrac{1}{a}  =  \dfrac{3 + 2 \sqrt{2} }{(3) {}^{2} - (2 \sqrt{2}) {}^{2}  }

\rm \: :  \implies \:  \:  \dfrac{1}{a}  =  \dfrac{3 + 2 \sqrt{2} }{9 - 8}  = 3 + 2 \sqrt{2}

We know that

 \rm \: :  \implies \:  \:  (a + b) {}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

we get

 \rm \: :  \implies \:  \:  \bigg(a +  \dfrac{1}{a} \bigg)^{2}  =  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  + 2 \times a \times  \dfrac{1}{a}

 \rm \: :  \implies \:  \:  \bigg(a +  \dfrac{1}{a} \bigg)^{2}  =  {a}^{2}  +  \dfrac{1}{ {a}^{2} }  + 2

 \rm \: :  \implies \:  \:  \bigg(a +  \dfrac{1}{a} \bigg)^{2}  - 2 =  {a}^{2}  +  \dfrac{1}{ {a}^{2} }

Put the value

\rm \: :  \implies \:  \:  \dfrac{1}{a}  = 3 + 2 \sqrt{2}  \:  \: and \: a = 3 - 2 \sqrt{2}

we get

  \rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = (3 + 2 \sqrt{2}  + 3 - 2 \sqrt{2} ) {}^{2}  - 2

 \rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = (3  + 3  ) {}^{2}  - 2

\rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = (6) {}^{2}  - 2

\rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = 36  - 2

\rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = 34

Answer

\rm \: : \implies \: {a}^{2}  +  \dfrac{1}{ {a}^{2} }   = 34

Answered by diajain01
82

★GIVEN:-

  • a = 3 - 2✓2

★TO FIND:-

  • a²+1/a²

★FORMULA USED:-

  •  \sf{ {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab}

★SOLUTION:-

First, we will find the value of 1/a

\sf :  \longrightarrow{a  = 3 - 2 \sqrt{2} } \\  \\  \sf :  \longrightarrow{ \frac{1}{a} =  \frac{1}{3 - 2 \sqrt{2} }  } \\  \\ \rm{rationalising \: the \: denominator} \\  \\  \sf :  \longrightarrow{ \frac{1}{a}  =  \frac{1}{3 - 2 \sqrt{2} } \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }  } \\  \\ \sf :  \longrightarrow{ \frac{1}{a} =  \frac{3 + 2 \sqrt{2} }{(3 - 2 \sqrt{2)}{(3 + 2 \sqrt{2} }) }  } \\  \\ \sf :  \longrightarrow{ \frac{1}{a}  =  \frac{3  +  2 \sqrt{2} }{9 +  \cancel{6 \sqrt{2}}  - \cancel{ 6 \sqrt{2}}  - 8} } \\  \\ \sf :  \longrightarrow \pink{ \frac{1}{a}  = 3 + 2 \sqrt{2} } \\  \\

Now, We know that:-

 \displaystyle \sf{   {(a + b)}^{2}  =  {a}^{2} +  {b}^{2}   + 2ab } \\  \\   : \longrightarrow\sf{ {(a +  \frac{1}{a}) }^{2}  =  {a}^{2} +   \frac{1}{ {a}^{2}  } + 2 \times  \cancel{a} \times  \frac{1}{ \cancel{a}}   } \\  \\  : \longrightarrow\sf{{(a +  \frac{1}{a}) }^{2}  =  {a}^{2} +   \frac{1}{ {a}^{2}  } + 2} \\  \\  : \longrightarrow\sf{{(3 - 2 \sqrt{2}  + 3 + 2 \sqrt{2} ) }^{2}  =  {a}^{2} +   \frac{1}{ {a}^{2}  } + 2} \\  \\  : \longrightarrow\sf{  {(6)}^{2}  =  {a}^{2}   +  \frac{1}{ {a}^{2} } + 2 } \\  \\ : \longrightarrow\sf{  {a}^{2}  +  \frac{1}{ {a}^{2} } = 36 - 2  } \\  \\ :   \implies{ \boxed{ \underline{ \huge{ \blue{ \sf{ \rm{ {a}^{2}  +   \frac{1}{ {a}^{2}   } = 34}}}}}}}

So, the value of a²+1/a² is 34.

Similar questions