Math, asked by headhunter72pubg, 10 months ago

If a=3+2√2 then find the value of a2-6a​

Answers

Answered by DavidJason
2

Answer: -1

Step-by-step explanation:

a^2-6a

(3+2-/2)^2 - 6(3+2_/2)

9+8+12_/2 - 18-12_/2

-1

Answered by Anonymous
6

Answer:

\sf{The \ value \ of \ a^{2}-6a \ is \ -1.}

Given:

\sf{\leadsto{a=3+2\sqrt2}}

To find:

\sf{The \ value \ of \ a^{2}-6a.}

Solution:

\sf{\leadsto{a^{2}-6a}}

\sf{Substitute \ a=3+2\sqrt2}

\sf{\leadsto{(3+2\sqrt2)^{2}-6(3+2\sqrt2)}}

\sf{\leadsto{9+12\sqrt2+8-18-12\sqrt2}}

\sf{\leadsto{-1}}

\sf\purple{\tt{\therefore{The \ value \ of \ a^{2}-6a \ is \ -1.}}}

_____________________________

\sf\blue{Extra \ information:}

\sf{Identities:}

\sf{1. \ (a+b)^{2}=a^{2}+2ab+b^{2}}

\sf{2. \ (a-b)^{2}=a^{2}-2ab+b^{2}}

\sf{3. \ a^{2}-b^{2}=(a+b)(a-b)}

\sf{4. \ a^{2}+b^{2}=(a+b)^{2}-2ab}

\sf{5. \ a^{2}+b^{2}=(a-b)^{2}+2ab}

\sf{6. \ (a+b)^{2}=(a-b)^{2}+4ab}

\sf{7. \ (a-b)^{2}=(a+b)^{2}-4ab}

\sf{8. \ (a+b)^{2}+(a-b)^{2}=2(a^{2}+b^{2})}

\sf{9. \ (a+b)^{2}-(a-b)^{2}=4ab}

Similar questions