Math, asked by ally8, 1 year ago

if a= √3+√2 / √3-√2 , b= √3-√2 / √3+√2. Find the value of a square + b square

Answers

Answered by DaIncredible
5
Hey friend,
Here is the answer you were looking for:
a =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  -  \sqrt{2} }  \times  \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2}  + 2( \sqrt{3})( \sqrt{2}  )}{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\  =  \frac{3 + 2 + 2 \sqrt{6} }{3 - 2}  \\  \\  = 5 + 2 \sqrt{6}  \\  \\ b =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} +  \sqrt{2}  }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3}  +  \sqrt{2} }  \times  \frac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ using \: the \: identities \\  {(a  -  b)}^{2}  =  {a}^{2}  +  {b}^{2}   -  2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2} \\  \\  =   \frac{ {( \sqrt{3}) }^{2}  +  {( \sqrt{2} )}^{2}   -  2( \sqrt{3})( \sqrt{2}  )}{ {( \sqrt{3}) }^{2}  -  {( \sqrt{2}) }^{2} }  \\  \\ =  \frac{3 + 2 - 2 \sqrt{6} }{3 - 2}   \\  \\  = 5 - 2 \sqrt{6}  \\  \\  {a}^{2}  +  {b}^{2}  \\  \\  =  {(5 + 2 \sqrt{6}) }^{2}  +  {(5 - 2 \sqrt{6} )}^{2}  \\  \\  = ( {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  + 2(5)(2 \sqrt{6} )) + ( {(5)}^{2}  +  {(2 \sqrt{6}) }^{2}  - 2(5)(2 \sqrt{6} )) \\  \\  = (25 + 24 + 20 \sqrt{6} ) + (25 + 24  - 20 \sqrt{6} ) \\  \\  = 49 + 20 \sqrt{6}  + 49 - 20 \sqrt{6}  \\  \\  = 49 + 49 \\  \\  = 98

Hope this helps!!!

@Mahak24

Thanks...
☺☺
Similar questions